

Mid-term Conference

Ir. René Corbeij Senior Program Manager TNO NextETRUCK Coordinator February 2024

Co-funded by the European Union

Co-funded by UK Government

This project has received funding from the European Union's Horizon Europe programme under grant agreement No 101056740

- **)** The Netherlands Organisation for Applied Scientific Research:
 - Independent research organisation to boost competitive strength of
 - industry and wellbeing of society
- Turnover 570M€
-) 3652 employees
- **)** TNO Mobility&Build Environment:
 - Turnover 80M€
 - Approx. 400 employees

Sustainable Traffic & Transport,

Smart & Safe Traffic & Transport,

Safe & Sustainable Living Environment

NEXTETRUCK

TNO POWERTRAINS / NEXTETRUCK

- **)** Know how:
 - > Battery Management (State, Charge, Thermal, Remaining useful life)
 - Modular Energy Management Systems (MEMS)
 - Digital twinning & logistics integration
 - > Specific expertise on Heavy Duty vehicle modelling and assessment
 - > System Engineering of hybrid/electric powertrains
-) Set of tools spanning the vehicle and operational level assessment
 - > Altitude Climate Engine & Vehicle testing
 - Battery (cell/module/pack) testing
 - High Power E-charge System testing
 - Real World Fieldlab Platforms

Reducing CO₂ emissions from heavy-duty vehicles

HD vehicles cause >25% of road transport GHG the EU, >6% of total EU GHG emissions.

- Despite improvements, these emissions are still rising, due to increasing road freight traffic.
- The EC proposed a revision of the Regulation on **CO2 emission** standards for HD vehicles.
- This proposal will introduce new, stronger CO2 emission standards for HD vehicles from 2030 onwards, and extend the scope of the Regulation to cover smaller trucks, city buses, long-distance buses and trailers.
- The EC's proposal has been (provisionally) adopted by the European Parliament and the Council of the EU on 18e January 2024.
- The European Parliament and Council now need to formally approve the agreement. Upon which the new legislation will be published in the Official Journal of the Union and enter into force.

Reducing CO₂ emissions from heavy-duty vehicles (europa.eu)

NextETRUCK

Efficient and affordable Zero Emission logistics through NEXT generation Electric TRUCKs

Grant:	12 M€
Consortium:	19 partners
Start date:	1 July 2022
Duration:	42 Months
Type of action	: HORIZON Innovation Actions

Scope of the project: New medium freight haulage vehicle for urban/suburban use optimized on: **Component level:** E-power train / charging infrastructure Vehicle architecture: Efficiency, cost, flexibility and size **Ecosystem:** Charging strategy, integration in mixed fleet, new business opportunities

NextETRUCK objectives

NextETRUCK objectives

- ZEV concepts tailored for regional medium freight haulage (N2 & N3) with at <u>least 10% energy</u> <u>efficiency increase</u> compared to existing highest-end benchmark EVs of the same size category and operating for similar mission profiles.
- Advanced vehicle <u>Digital Twin</u>, as well as <u>digital tools for fleet management</u> and virtual integration of ZEV
- Vehicle <u>architecture design tool</u> for optimized design, safety, sizing and integration of powertrain components, leading to <u>TCO reduction</u>
- Efficient <u>fast charging concept and infrastructure demonstrator</u> that is cost-efficient, flexible and compliant with various business practices and fleet operation structures
- Demonstrators in three different unique real-world cases where the concepts' feasibility and superiority to the existing MFH systems are validated for a range of at least 200 km daily operation over a period of at least <u>6 months</u>
- New business models to <u>increase the end user acceptance</u> and foster market uptake of the NextETRUCK solutions.

Team

Participant No. *	Participant organisation name	Short name	Country
1 (Coordinator)	NEDERLANDSE ORGANISATIE VOOR TOEGEPAST NATUURWETENSCHAPPELIJK ONDERZOEK	TNO	NL
2	VRIJE UNIVERSITEIT BRUSSEL	VUB	BE
3	ABB eMobility DIGITAL VENTURE GMBH	ABB	DE
4	FUNDACION TECNALIA RESEARCH & INNOVATION	TEC	ES
5	NNG SZOFTVERFEJLESZTO ES KERESKEDELMI KFT	NNG	HU
6	EUROPEAN ROAD TRANSPORT TELEMATICS	ERTICO	BE
	IMPLEMENTATION COORDINATION ORGANISATION -		
	INTELLIGENT TRANSPORT SYSTEMS & SERVICES EUROPE		
7	PROMOTION OF OPERATIONAL LINKS WITH INTEGRATED	POLIS	BE
	SERVICES, ASSOCIATION INTERNATIONALE		
8	ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS	CERTH	EL
9	AIT AUSTRIAN INSTITUTE OF TECHNOLOGY GMBH	AIT	AT
10	FORD OTOMOTIV SANAYI ANONIM SIRKETI	FORD	TR
11	JEMA ENERGY SA	JEMA	ES
12	AVL DEUTSCHLAND GMBH	AVL-D	DE
13	AVL LIST GMBH	AVL-AT	AT
14	IRIZAR S COOP	IRIZAR	ES
15	FUNDACION CIDETEC	CID	ES
16	STICHTING CENEX NEDERLAND	CENEX NL	NL
17	DATIK INFORMACION INTELIGENTE S.L.	DATIK	ES

18 (Associated	TEVVA MOTORS LIMITED	TEVVA	UK
partner)			
19 (Associated	CENEX - CENTRE OF EXCELLENCE FOR LOW CARBON AND	CENEX UK	UK
partner)	FUEL CELL TECHNOLOGIES		

A

NextETRUCK Mgt structure

- General Assembly (GA);
- Executive Board (EB);
- Coordinator;
- **Project Back Office;**
- Work Package Leaders;
- Task Leaders;
- Partner Manager;

- as the ultimate decision-making body of the consortium. supporting the Executive Board and the Coordinator. manage the Work Packages as set out in the Grant Agreement. This group supports and monitors Task Leaders.
- representing the consortium partner in the GA.

consisting of the Coordinator, Scientific Lead, Back office, Innovation Management, WPLs.

as the legal entity acting as the intermediary between the Parties and the Granting Authority.

have to provide a successful implementation of the individual tasks within the Work Packages.

WPs & WPLs

Work Package No	Work Package name	Lead Beneficiary
WP1	Project Coordination and Management	1 - TNO
WP2	Requirements, specifications and missions	13 - AVL AT
WP3	System Architecture and TCO optimization: e- Powertrain and charging infrastructure	2 - VUB
WP4	Advanced Digital Twin, Virtual integration of ZEVs, Control and Fleet Management systems	1 - TNO
WP5	Components prototyping, testing and vehicle integration	4 - TEC
WP6	Infrastructure, Charging and Management Systems	3 - ABB Panion
WP7	Use-cases and Demonstrations	6 - ERTICO
WP8	Evaluation, Impact Assessment and upscaling strategy	8 - CERTH
WP9	Dissemination, Communication and Liaison	7 - POLIS

Planning

Activities *	Leader •	
WP1: Project Management	TNO	
Task 1.1 Project Coordination - technical project management	TNO	
Task 1.2 Operational Manacement - Back office	VUB	
Task 1.3 Innovation Management	ERTICO	
WP2: Requirements, specifications and missions	AVL-AT	
Task 2.1 Use case, mission and overall vehicle definition	ERTICO	
Task 2.2 System definition	AVL-AI	
Task 2.3 Definition of System Elements	VUB	
Task 2.4 Definition of System Interactions and E/E Architecture	AVL-AI	
lask 2.5 lest procedure catalogues		
Teak 2.1 Co design entimization from swork for vehicle a new entrain and charging infrastructure	VUB	
Task 3.1 Co-design optimization tranework for vehicle e-powentrain architecture		
Task 3.2 Development and design of innovative thermal system and cabin concept for the electric trucks		
Task 3.4 Design of internal system control and interfaces for connected electric truck fleet		
Task 3.5 Functional Safety for demo vehicles		
Task 3.6 Holistic design alignment and TCO assessment for electric trucks	CENEX UK	
WP4: Advanced Digital Twin, Virtual integration of ZEVs), Control and Elect Management systems	TNO	
Task 4.1 Development of advanced Digital Twin models of the demo vehicles	TNO	
Task 4.2 Innovative multi-level vehicle control systems for Use-cases	TEC	
Task 4.3 Self-adaptive energy truck fleet management system	CERTH	
Task 4.4 Virtual verification on components, vehicle and fleet concepts	TEC	
WP5: Components prototyping, testing and vehicle integration	TEC	
Task 5.1 Component & subsystem prototyping and deployment	AVL-AT	
Task 5.2 Testing and calibration of components and controls	CD	
Task 5.3 Integration and implementation in the vehicle demonstrators	AVL-AT	
Task 5.4 Vehicle-in-the-Loop Functional Verification and testing	TNO	
WP6: Infrastructure, Charging and Management Systems	ABB	
Task 6.1 Topology optimization and development of new and efficient Megawatt charging system with multiple outputs for logistics hubs	Jema	
Task 6.2 Development of smart adaptive local control systems and Software deployment for the MCS	Jema	
Task 6.3 Prototyping, implementing and testing of the MCS	Jema	
Task 6.4 Development of Charge Management and Planning Platform	ABB	
Task 6 & Active participation in the relevant standardization bodies for MCS	CENEX UK	
WP7: Use-eases and Damonstration	ERTICO	
Task 7.1 Demonstration planning, procedures, ramp-up and pilot	ERTICO	
Task 7.2 Delivery Truck Demonstration in Turkey	FORD	
Task 7.3 System demonstration of modular vehicle architecture structure for urban use electric truck demonstration in Barcelona	IRIZAR	
Task 7.4 Goods distribution Urban electric truck demonstration in the Netherlands	TEVVA	
Task 7.5 Data collection and processing	CENEX UK	
WP8: Evaluation, Impact Assessment and upscaling strategy	CERTH	
Task 8.1 Evaluation plan	CERTH	
Task 8.2 Validation	TNO	
Task 8.3 Scaling up and Impact Assessment	VUB	
Task 8.4 Exploitation and recommendations	ERTICO	
WP9: Dissemination and Exploitations	POLIS	
Task 9.1 Dissemination & communication strategy	POLIS	
Task 9.2 Communication channels and tools	ERIICO	
Task 9.3 Technical dissemination, liaison and events	POLIS	
Task 9.4 Capacity building and Reference Group	POLIS	
	Milestone	

NextETRUCK

USE CASES

- Use case 1: Istanbul

A demonstrator truck from Ford Otosan will be demonstrated on-road in Turkey in collaboration with a logistic company

Use case 2: Barcelona

Refuse Truck from Irizar in Barcelona operated by waste collection & recycle company

Use case 3: UK

"Back to base" logistics vehicle manufactured by **Tevva** operated in a single shift per day planning

